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ABSTRACT

Three methods for assessing influence in an accelerated

life-testing model are considered; two different one-step

approximations to the estimated parameter after case

deletion and a method which treats extreme values at each

design point as censored. These methods are compared using

an example. Problems which occur when all observations at

a design point are censored are discussed.

Key Words: Censored data, Linear regression, Regression

diagnostics, EM algorithm. S
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1. INTRODUCTION
.0

The focus of this paper is on understanding and

assessing the influence of individual and groups of points -
A

on outcomes of interest in accelerated life testing. We

will consider only a simple specific situation which occurs

sufficiently often to merit study.

We shall assume that failure times have a distribution

which can be described by unknown parameters, known

environmental variables such as temperature, voltage, etc.

and a distribution function which belongs to the class of

accelerated failure time models, see Lawless (1983) and

Kalbfleisch and Prentice (1980). Ordinarily, one will be

concerned with the distribution at a specified set of

environmental variables given by a vector xo. However,

experimenting at xo may not prove to be practical because

of time constraints. One solution is to run experiments at

more extreme environmental conditions where failures can be

expected to occur during the course of the experiment, and

then to extrapolate the resulting model to the environment

x of interest.

These kinds of experiments are often characterized by S

three components. The first is Type I censoring, i.e., the

experiments are censored from above at fixed times. The

second point is that in many of these experiments only a 5

• S[
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few test conditions x1 ,..., Xk are run, but there are

replicates at each test condition. The third component of

the problem is that often the real parameter of interest is

a percentile of the failure distribution at the environment

of interest.

If Tij denotes the failure time of the ith component 0

at the jth test condition, then our model is

= log(T i.) = xT8+o-e. j=l...,k, i=l.... n ,(i)

where the distribution function F and density f of the

(eij) is known, e.g., extreme value (Lawless and

Singal(1980)) or normal (Nelson and Hahn(1973)), leading to

Weibull or lognormal models respectively for the failure

times. The censoring times (S.) are often fixed and depend

only on the test condition, so we observe

Zij = minimum(Yij,Sj), (2)

1 if the (i,j)th observation fails

6.. :(3)

0 if the (i,j)th observation is censored.

4

* S
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The parameter of major importance is the 1OOth percentile

of the failure distribution at a specified test condition

0
00

H(-,B,x o0) = exp(x T+o-z (4)
0 0 01

where

F(z ) = (5)

In this paper, various ways of assessing the influence

of individual and groups of points on estimates of the

(10Oth percentile H(o-,8,x,0 (x) will be discussed through

use of an example. Some of the considerations that arise

are very different from what one ordinarily encounters in

the linear regression case because of censoring and

replication.

2. EXAMPLE

Crawford's (1970) data set, which considers the

failure times of electrical insulation of motorettes as a

function of temperature, will serve as an example to

illustrate the proposed methods of assessing influence in

an accelerated life testing situation. Ten motorettes were

tested at each of the temperatures 220°C, 190°C, 170°C and

150°C, with interest focusing on the median and 10th

percentile of the distribution at 130 0C, which as is

typical in accelerated life tests, was unobserved. The

t9
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Arhenius law was used to model the data:

a.

Yij = logTij =80O +8 i/a + o-eij, (6) _.-.

*where ta is the absolute temperature and the (e. .) are--

assumed to be normally distributed with mean zero and

variance one. The available data at 15, 16, 19, 21 and 33

months into the experiment are listed in Table 1 and the

data at 33 months is plotted in Figure 1. 4

If we let e=(B,o-) and AMl) be the log-likelihood of

the data, then

A () = i L..(e), (7)//__ij 1)

where

Lij(e) = ijlog If uije))/O - +

+ Ul - ij)log lF (uij ()))] (8)

and
uij(= (Yij-xjT/.19 '.

If X is the design matrix, then the maximum likelihood

estimators (MLE) of 8 and o- are computed using the

expectation maximization (EM) algorithm (Dempster et. al.,

- . • , , ,



-5-

1977, Aitkin, 1981). The expectation step requires the

computation of

yij =+ (l4ij)EL jYij>Sj (10)

and
*2= 2 * 2 ( F*2 1

and 8 and o3- are comput-d in the maximization step as

a (= xT 1X lT (12)

OP =(1/n) (y*XB) T(y..X$). (13)

For the normal case we obtain

E[y~ij*Yi >Si = T a + o.4u )/1-1( u5  (14)

sj s.

and

* E~~~~yij*2Iyij>Sj = x 5

i T
J-Si+ )+uj 5)/(-( 5 (5

where

u j= (S.i-x. 8)/o-. (16)

Since y is a function of the estimate of 8, the actual

maximum likelihood estimate is found by iteration and thus
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often denoted as the IMLE. An alternative method for

computing estimates of 6 and o- was suggested by Schmee and

Hahn(1979). Their iterative least square method (ILS)

differs in the computation of o- in that E yij Iyij>S

is replaced by EtyijlyiJ>S12 "

The IMLE along with the confidence intervals for the

median and the 10th percentile are listed in Table 2. Note

that o- is bias corrected as suggested by Aitkin(1981) and

Tiku (1980), i.e., o- is replaced by o-[n0/(n 0-l] where

c Z" "i ij

S

Table 2. Maximum likelihood estimates of B and o-, along

with the estimated median and 10th percentile lifetimes

with their associated confidence intervals at 130 c.

Confidence
Confidence interval for
interval for 10th percentile

Median Lifetime 10th Lifetime
Month B 0 - Median Lower Upper percentile Lower Upper

Lifetime Limit Limit Lifetime Limit Limit

15 -4.887 3.853 .3980 46.8 17.7 123.8 14.5 4.7 44.3

16 -6.010 4.306 .2757 46.7 24.7 88.4 20.7 9.6 44.7

19 -6.541 4.539 .2359 52.1 31.2 86.8 26.0 14.8 45.5

21 -6.934 4.725 .2405 61.0 36.8 101.0 30.0 17.2 52.3

33 -6.379 4.460 .2128 4R.1 32.7 70.9 25.7 16.9 39.0 0

6 5r
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The 16 month data have been extensively analyzed, see

Nelson and Hahn (1972,1973), Schmee and Hahn (1979), Aitkin

(1981), Nelson (1982) and Kalbfleisch and Prentice (1980).

We are using these data illustratively and note only in

passing that the linearity and normality assumptions appear

fairly reasonable, although the constant variance

assumption is questionable. Nelson (1982) states "the two

earliest failures at 190 C appear early compar the

other data. ... The experiment was reviewed seek a cause

of the early failures, but none was found. Ana_ -s yield

the same conclusions whether or not these failures are

included."

I-

S

S1

K - S,2 ' .
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3. EFFECTS OF INDIVIDUAL AND PAIRS OF POINTS

In the usual case, influence diagnostics have been 1
concerned with the effects of single case-deletion on

constructs such as estimated parameters, likelihoods or

4ensembles of predicted values, see Cook and Weisberg
(1982). With the exception of ordinary linear regression

where explicit formulae for parameter estimates exist,

computation of case-deletion influence diagnostics can be

extremely time-consuming; it is usually somewhat expensive

to construct influence diagnostics based on deleting pairs

of points. For example, suppose in the motorette data we

want to compute the influence of individual and pairs of

observations on the percentiles H(o-,B,xo,'). Then 40

maximizations would be required tc assess the influence of

individual points, while 780 maximizations would be

required for pairs of observations. Such extensive

computations will likely prove impractical. One way to

avoid this computational morass is to delete only single

observations and not consider pairs of points; this

approach is sometimes unsatisfactory because it increases

the chance of being trapped by masking, as we shall

illustrate later.
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Detection of influential observations for the censored -0

linear model can be quite different from that for ordinary

linear regression since outliers in the censored model can

become more consequential than in the uncensored model. In 0

the latter case outliers can influence the estimator B

directly, but the effect need not be significant, since it

depends as well on the leverage of the outliers. In the S

censored case, however, this is different, because an

influential point can affect the estimation in two ways. A

point which has not only a small residual at each iteration 0

but also a large leverage can affect the estimation of 8,

and may affect the estimation of the expected times (14) to

a certain extent since these are a function of 8. However, '

a point with a large residual and a small leverage can

cause the estimate of o- to be large and will have its

impact on the estimator B through the estimation of the

expected times (14) for censored points.

The usual way out of the computational dilemma is to I
replace maximum likelihood estimation after case or pair

deletion by one-step approximations starting from the full

data maximum likelihood estimator. This is the approach

taken by Cook and Wang (1983) and by Hall, Rogers and

Pregibon (1982), although neither of these authors consider

deleting pairs of observations. Letting 0 be the maximum

likelihood estimator of (B,o-), the one-step approximate

0
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maximum likelihood estimator based on deleting the (i,j)th

observation is

S 0-(R ()) G. (ii ), (17)
0(ij) (i,j)

Gij 1()= Lj ()/J9 (18)

and

Rij(9)=-J2 / 82 A(i,j) () (19)

where A(i,j)(e) is defined by (7) with the (i,j)th point

removed. Other, computationally simple approximations to

the maximum likelihood estimate exist and do not require

iteration, see Persson and Rootzen (1978) and Schneider

(1984a). The Persson and Rootzen estimator avoids the

iterative steps required for the other methods by setting

-1
in equation (9) equal to ui j= (noj/n.) where n .=n.

n and n is the number of censored observations atrj rj

condition j. With this restriction an explicit estimator

Tfor x. a and o-. at each test condition is obtained. TheJ )

estimated times are obtained by substituting (no/n

. into (14) to get

EFYiY. .>SiX.TB + o-1l(n ./njn/n .. (20)1ijIijS=jJL 0 ) n j j rj

0w

- * .
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Then the expected loglife times estimated by (20) are used

in equations (12) and (13) to arrive at the final estimates -.

of B and o- which we will call the restricted maximum

likelihood estimates (RML). Simulation studies of

Schneider (1984b) suggest that this approximation, which we

will name the restricted estimator, has behavior very

similar to that of the maximum lkelihood estimator.

The replication at each test condition typically found

in accelerated life-testing problems provides another way

of avoiding massive computation to detect influential

single and pairs of points, without having to resort to

approximations to the maximum likelihood estimator.

Specifically, we have found that it is often satisfactory

to consider only the extremes at each test condition. For

example, we can delete the smallest single and pair of

points at each test condition, and then repeat the exercise

for the largest single and pair of points. If there are k

test conditions, then this involves estimating 9=(B,o-) -

only 4k times, a number which can be small enough to allow

paIpIJtation of the maximum likelihood estimate rather than

approximations to it. For example, in the motorette data,

there are k=4 test conditions so that the iterative

algorithm used to compute the maximum likelihood estimate

need only be employed 16 times, well within the bounds of

" - ' ' " , " " -' 4 - -' - " . .. . ... . . . - " ... ... .. . . ... . ." . . . . . .
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feasibility. While this idea is not the same as deleting

all possible pairs of points, it is often sufficient. In

practice, it is rare that pairs of points are deleted to

check for influence, so our idea does provide a simple way

of expanding upon what is usually done. The idea of

deleting extremes at each test condition can be extended

easily to triples, etc.

A final method that we employ is to consider again the

extremes at each test condition, but rather than using

deletion techniques we censor observations. For example,

the largest failure time at a test condition would be

censored, with similar censoring at pairs, triples, etc.

For the smallest censoring times we replace deletion by

left or Type II censoring, see Tiku (1975). Full maximum

likelihood estimation is used after these successive

censorings. If we only consider single and pairs of

observations at the k test conditions, we again need only

4k iterative maximizations.

We now illustrate these ideas on the motorette data,

focusing on the effects of early failures on the predict":1

,nedian lifetime at 1300 C. The results are given in Table
*D

3. It is interesting to note that none of the case

deletion or Type II censoring methods suggest any problems

when one considers single points. In fact, there appears



-13-

to be real evidence of masking, as seen by the large

changes in prediction when deleting or Type II censoring

the early failures at 190 0C, which were earlier labelled by

Nelson (1982) as suspect. Note that case deletion followed0

by our restricted estimator also leads to concern about the

early failures at 1900 C, but the one-step approximation

after case deletion gives us no clue as to the effect of

these points. It would seem from this example that case-

deletion and then one-step maximum likelihood estimation is

unsatisfactory as a general technique for accelerated life-

tests. As an approximation used for computational

convenience, the restricted estimator seems to be

preferable to the one-step maximum likelihood estimator.S

4 5

4 5 i

4 5°

to b rel eidene o making assee by he arg i
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Table 3. Influence of single and pairs of points for the

16th month data measured in percentage of deviation of the

0median at 130 C. N is number of deleted or censored

points at test condition j.

Censoring RML one-step MLE Type II censoring MLE
C N

0

220 1 1.3% -0.9% 0.0% 0.2%

220 2 1.3% 0.9% 0.0% 0.6%

190 1 -1.8% 2.0% -8.1% -8.4%

190 2 -17.0% 2.4% -22.1% -21.3%

170 1 6.0% 8.4% 0.8% 9.9%

170 2 13.0% 12.2% 1.3% 20.8%

The results at 170 0C also suggest that no major

problems occur when a single point is deleted or censored.

However, when pairs of points are considered the RML, one-

step MLE, and MLE lead to concern about the two early

failures at 170°C but the method of Type II censoring fails

to call attention to this pair of points. It appears from

this example that the method of Type II censoring is most

appropriate for detecting points which do not preserve th

structure of the distribution at a design point. When the

structure of the distribution is preserved the expected

S '



- - -- -- * r-r .

- 15 -"''

times estimated by equation (14) will differ little from 0

the observed times so that the censoring has a small impact

on the estimates of B and o-. This also points to the

restricted estimator as a desirable computational A

alternative to the other methods for the Crawford data.

4. THE INFLUENCE OF TOTAL CENSORED TEST CONDITIONS 0

The Crawford data at 16 months exhibits a fairly

common characteristic, namely that for one test condition,

all the data points are censored. Most often, this will 0

happen at the test condition nearest the enviroment x° in

which we have interest.

An analysis of the asymptotic variance reveals that .

the variance of the slope estimator can be strongly

dependent upon whether or not there are any uncensored

observations at the extreme design points. The variance of

the estimator B depends, generally speaking, upon the

method of censoring. An equal percentage of censored

observations at all design points will primarily affect the

bias and variance of the intercept rather than that of the

slope. Unequal censoring at the design points, as is

typical for accelerated life tests, will mainly increase 0

the variance of the slope.

S

". . .: . . . . ", " . . - . : . .
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Table 4. Estimated asymptotic variance of IMLE 8; four

test conditions with ten replications; entries have to be

multiplied by 10- .

Percent of Equal censoring Equal censoring but last

censored ob- at each design test condition has p%

servation point observations censored

p=90% p=lO0%

V( o  V( 1) V(Bo) V(BI ) V(So) V(SI)
10 1.527 .203 1.840 .320 2.375 .509

20 1.573 .209 1.873 .327 2.664 .550

30 1.644 .217 1.924 .335 2.554 .543

40 1.748 .229 2.001 .346 2.712 .572

50 1.907 .244 2.123 .361 2.950 .611

Table 4 gives the asymptotic variance of the IMLE of a

estimated from four test conditions (x=1,2,3,4; o-=) where

the first three conditions are subject to equal censoring

and the last condition is subject to 90% or 100%

censorship. We see, for instance, that if 10% of the

observations are censored at each design point, the

asymptotic variance of the intercept and the slope are

V(S )=.1530 and V(B )=.0204. When, on the other hand, 10%
0
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of the observations at the first three conditions and all

observations at the last condition are censored, the

asymptotic variances increase to V(S 0 )=.2381 and

v(S 1)=.0509. Thus, the loss of efficiency of B is more than -
.0

*100%. We also notice that the variance of 8 is reduced
0

significantly, namely to V(81)=.0316, by simply adding one

uncensored observation at the last design point. In other

words, for this case, the variance of the slope estimator

increases about 60% when the last remaining observation at

the fourth design point is censored as well.

These results can become important for accelerated

life tests. Returning to our example we conclude that

prediction based on the 16th and 19th months is not as good 0

as that based on the 21st and 33rd month data due to the

0total censoring at 150 C. As the asymptotic variance

suggests, the estimators should improve when the first

0
Ifailure time 150 C is added to the 16th month data. When

this failure time is added we obtain a predicted median

lifetime at 130 0C of 57,238 and a 95% confidence interval

of (30895,106042) hours for the estimates based on the

entire data set and 46,415 hours and a 95% confidence

interval of (32136,67038) hours for the estimates when theS

two early failures at 1900C are Type II censored. Indeed

the estimates of the median lifetime at 130 OC only improve

when the influence of the outliers is bounded.
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In Figure 2 we plot the estimated median at 130°C and

the associated confidence intervals for the complete data

and with the two earliest failures at 190 °C being censored;

a similar figure for the 10th percentile is given in Figure

3. These figures show that the predictions stabilize after

21 months, i.e. when more precise information about the

failures at 150 0 C is available.

5. CONCLUSIONS

The results prestented here suggest that, for the

purpose of ass-1.:ij influence in the Crawford data set,

the restricted estima-cr was preferable to the one-step

maximum likelihood estimator, at least as a computationally

simple approximation to the actural maximum likelihood

estimator. Using Type II censoring as a method for

assessing influence seems to be adequate for pointing out

observations which cause the variance of the failure time

at a particular design point to be different from the

variance at the other design points. These methods also

point out the problems which can occur when all

observations at a design point are censored.



- 19 -

Helmut Schneider's work was supported by the Deutsche 0

Forschungsgemeinschaft and the Air Force Office of

Scientific Research.

Lisa Weissfeld's work was partially supported by National

Heart, Lung and Blood Institute contract NOI-HV-12243-L.

Ray Carroll's work was supported by the Air Force Office of

Scientific Research under grant AFOSR-80-0080.

0 .

0

-S



- 20 -

..

200

REFERENCES 
j

Aitkin, M.A.(1981) A note on the regression analysis of

censored data. Technometrics 23, 161-163.

Amemiya, T. (1973) Regression analysis when the dependent

variable is truncated normal. Econometrica 41, 997-1016.

Cook, D. and Weisberg, S. (1982) Residuals and Influence in

Regression. New York: Chapman and Hall.

S

Cook, R.D. and Wang, P.C. (1983) Transformations and Influ-

ential cases in Regression. Technometrics 25, 337-343.

Crawford, D.E. (1970) Analysis of incomplete life test data

on motorettes. Insulation/Circuits 16, 43-48.

Dempster, A.P., Laird, N.M. and Rubin D.B. (1977) Maximum

likelihood from incomplete 
data via the EM algorithm

(with discussion). J.Roy.Statist.Soc., Ser. B, 39, 1-38.

Kalbfleisch J. and Prentice R. (1980) The statistical analysis of

failure time data. New York: John Wiley.

Lawless, L.F. (1983) Statistical Methods in Reliability

(with discussion). Technometrics 25, 305-335.

Lawless, J.F. and Sighal, K. (1980) Analysis of data from

life-test experiments under an exponential model. Naval

Research Logistics Quarterly 27, 323-334.



- 21 -

Nelson, F.D. (1981) A test for misspecification in the .0

censored normal model. Econometrica 49, 1319-1330.

Nelson, W. (1982) Applied life data analysis. New York:

John Wiley. 0

Nelson,W. and Hahn, G.J. (1972) Linear estimation of

regression relationship from censored data.

Part I-Simple methods and their application S

(with discussion). Technometrics 14, 247-276.

Nelson, W. and Hahn, G.J. (1973) Linear estimation of a

regression relationship from censored data. S

Part II -best linear unbiased estimation and theory

(with discussion). Technometrics, 15,133-150.

Persson, T. and Rootzen, H. (1977) Simple snd highly 0

efficient estimators for a Type I censored normal

sample. Biometrika 64, 123-128.

Schmee, J. and Hahn, G.J. (1981) A computer program for 0

simple linear regression with censored data. Journal of

Quality Technology 13,264-269.

Schmee, J. and Hahn, G.J. (1982) Correction to "A computer -

program for simple linear regression with censored

data." Journal of Quality Technology 14, 235-235.

Schneider, H. (1984a) Simple and highly efficient S

estimators for censored normal samples. Biometrika

71, 412-414.

Schneider, H. (1984b) Censored samples from a normal

LS



I. .

-22 -

population, to appear.

Tiku, M.L. (1975) A new statistic for testing suspected

outliers. Commun. Statist. 4, 737-752.

Tiku, M.L. (1978) Linear regression model with censored 0

observations. Commun. Statist. Theor. Meth. A7, 1219-1232.

0

I S J

.

oS

4 o5

* S l



C+*1

'U

co
00

0

'u-r

C-+3
m0

* 0(D-S

4 ro



Table 1. Accelerated life test for 40 motorettes (Crawford, 1970).

Temperature Lifetime Censoring Times (hours)
c (hours) 15 16 19 21 33

months months months months months

220 408 336 528 700 700 17,ol U
220 408 336 528 700 700 17,661
220 504 336 528 700 700 17,661
220 504 336 528 700 700 17,601
220 504 336 528 700 700 17,661
220 600 336 528 700 700 17,661
220 600 336 528 700 700 17,661
220 648 336 528 700 700 17,661
220 648 336 528 700 700 17,661
220 696 366 528 700 700 17,661

190 408 1,296 1,680 3,120 4,000 17,661
190 408 1,296 1,680 3,120 4,000 17,661
190 1,344 1,296 1,680 3,120 4,000 17,661
190 1,344 1,296 1,680 3,120 4,000 17,661
190 1,440 1,296 1,680 3,120 4,000 17,661
190 1,920 1,296 1,680 3,120 4,000 17,661
190 2,256 1,296 1,680 3,120 4,000 17,661
190 2,352 1,296 1,680 3,120 4,000 17,661

190 2,596 1,296 1,680 3,120 4,000 17,661 .
190 3,360 1,296 1,680 3,120 4,000 17,661
170 1,764 5,112 5,448 6,792 7,632 17,661
170 2,772 5,112 5,448 6,792 7,632 17,661 S
170 3,444 5,112 5,448 6,792 7,632 17,661
170 3,542 5,112 5,448 6,792 7,632 17,061
170 3,780 5,112 5,448 6,792 7,632 17,061
170 4,680 5,112 5,448 6,792 7,632 17,661
170 5,196 5,112 5,448 6,792 7,632 17,661
170 6,206 5,112 S,448 6,792 7,632 17,661
170 7,716 5,112 5,448 6,792 7,632 17,661
170 7,884 5,112 5,448 6,792 7,632 17,661
150 11,781 7,392 8,064 9,429 11,421 17,661
150 12,453 7,392 8,064 9,429 11,421 17,661
150 13,897 7,392 8,064 9,429 11,421 17,661
130 14,469 7,392 8,064 9,429 11,421 17,661

150 15,891 7,392 8,064 9,429 11,421 17,616]
150 17,325 7,392 8,064 9,429 11,421 17,obl
150 17,325 7,392 8,064 9,429 11,421 17,661
150 17,661 7,392 8,064 9,429 11,421 17,661

150 17,661 7,392 8,064 9,429 11,421 17,661

150 17,661 7,392 8,064 9,429 11,421 17,661 S
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Figure 2 Median life in 1,000 hours and 95% confidence

intervals, (a) with all data, (c) the two

earliest observations at 1900C censored.
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confidience intervals, (a) with all data, (c)

the two earliest observations at 190*C censored.
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